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1. Research Interests

We are living in an age in which data are pervasive, big and complex data of all kinds being
collected at a brisk pace to enable advances in scientific, medical, industrial, financial and many
other domains. Extracting information from data and turning data into actionable knowledge
are fundamental challenges that we must address. Mathematics has much to contribute to these
challenges in data science that opens up many new research perspectives. My research interests
are in problems that involve data and mathematics, particularly algebraic topology, Riemannian
geometry, optimal transport and statistics. I have worked on problems related to the theoretical
foundations of geometric and topological data analysis, as well as applications to problems in
ecology and materials science. I intend to continue to pursue some of these lines of investigation,
but very importantly, I would like to broaden the scope of my research during my postdoctoral
experience. Below, I provide some details about completed and ongoing projects in which I have
participated, and also discuss some future research plans.

2. Topological Data Analysis

Persistent homology is one of the main tools in topological data analysis (TDA) that allows us
to summarize and analyze complex features of data through computationally accessible barcodes
or persistence diagrams. Thus far, I have worked on two main TDA projects: (i) examining ways of
effectively using TDA to analyze random functional and structural data with persistence diagrams
that are rich in information about their shape and (ii) extending persistence homology to a more
general setting that unifies such structures as persistence modules and zigzag modules.

2.1. Topological study of functional data and structural data. This is joint work with
Washington Mio and Facundo Mémoli, published in the Journal of Applied and Computational
Topology [2]. We investigated ways to use persistent homology to analyze functional data on
compact topological spaces and structural data represented as compact metric measure spaces. The
usual way of applying persistent homology to the sublevel (or superlevel) set filtration of functional
data may lead to highly innaccurate barcode expressions caused by the topology of regions where
the signals are weak, often unrelated to the shape of the signal. In our paper, we introduced a cone
construction, which has a “barcode trimming” effect that enhances the “actual” shape of functional
data. We defined a metric on the space of compact functional spaces and proved a stability theorem
for persistent homology, stronger than the stability theorem for standard barcodes. We also mapped
metric-measure spaces to functional space via their Fréchet functions, proving consistency results
and obtaining rates of convergence for barcodes derived from empirical distributions.

To make this approach amenable to computation, in an ongoing project with W. Kim and F.
Mémoli at OSU, we are studying a 2D persistence version of the problem using bi-filtered simplicial
complexes. Associated invariants would summarize features which persist both along the scales of
functional value and Vietoris-Rips scales for the domains of the functions. Most of the results in
[2] have an analog in the 2D setting. The real difficulty is that there are no complete, computable
invariants for 2D persistent homology. We currently are working on obtaining meaningful and yet
computable invariants of 2D persistent modules.
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2.2. Correspondence Modules and Persistence Sheaves. This is the core material of my
doctoral dissertation that I am writing under the supervision of Washington Mio. I introduce the
notions of correspondence modules (c-modules) and persistence sheaves that not only provide a
unifying framework for the study of various types of 1D algebraic persistence structures such as
persistence modules and zigzag modules, but is also broader, including many additional structures.
A manuscript on this material is at an advanced stage of preparation and a pre-print should be
posted on arXiv shortly.

In its simplest form, a persistence module is a sequence a vector spaces (over field k) connected
by (forward) linear maps: V1 → V2 → V3 → · · · . More general forms of these 1D modules are
parameterized over R. A zigzag module is a sequence of vector spaces connected by forward or
backward linear maps: V1 ↔ V2 ↔ V3 ↔ · · · , where each ↔ can be either → or ←. However, it
is less clear how to define zigzag modules parameterized over R. In either case, if the module is
“tame”, it can be represented, uniquely up to isomorphism, as the direct sum of simple components
called interval modules. This gives us some indication that the directions of the arrows are not
so relevant for the decomposability property. In my dissertation, I show that decomposition can
be achieved for much more general structures in which linear mappings (forward or backward) are
replaced with partial linear relations.

A persistence module over R assigns to each s ∈ R a vector space Vs, and to each pair s ≤ t a
linear map vts : Vs → Vt such that vss = IVs and vts ◦ vsr = vtr for any r ≤ s ≤ t. In a correspondence
module, vts is only assumed to be a linear relation from Vs to Vt; that is, a vector subspace of Vs×Vt.
In this setting, the relations vts are assumed to satisfy the following compatibility conditions: vss is
the diagonal subspace ∆Vs ⊆ Vs × Vs and vtr = vts ◦ vsr := {(u,w) ∈ Vr × Vt | ∃v ∈ Vs s.t. (u, v) ∈
vsr and (v, w) ∈ vts}, for any r ≤ s ≤ t. Among many other things, this allows us to make sense of
zigzag structures continuously parameterized over R.

Our main result is a decomposition theorem for “tame” correspondence modules. Unlike per-
sistence modules, to each interval J ⊆ R, there are up to four non-isomorphic interval c-modules
associated with J .

Theorem 1. If a c-module V is tame, then V is isomorphic to a direct sum of interval c-modules.

By passing from a c-module to its sections over intervals, we obtain a sheaf theoretical represen-
tation of a c-module that we call persistence sheaf (p-sheaf) of sections. Persistence sheaves have
the technical advantage of placing us back in the category of vector spaces and linear mappings.
The decomposition theorem stated above is a special case of a more general theorem that applies
to sufficiently “tame” p-sheaves. We also have proven an algebraic stability theorem in this more
general setting for barcodes derived from interval decomposition of p-sheaves.

As already mentioned, c-modules and p-sheaves generalize persistence and zigzag modules to a
broader framework that allows us to investigate a number of other problems. For example, they
provide a more natural framework to formulate level-set persistent homology of a function (as
opposed to using discrete zigzags), it enable us to define restrictions of a 2D persistence module to
lines of negative slope, etc. In the future, I will continue to explore new applications of c-modules
and p-sheaves, including ties with 2D persistence modules.

3. Covariance Fields on Riemanian Manifolds

The mean and covariance matrix are the most basic statistics of Euclidean data and crucial in
principal component analysis (PCA). Nonetheless, the standard formulation of covariance uses the
linear structure of the ambient space in an essential way, making it unclear how to extend the
concept to data on Riemannian manifolds in a principled manner. For distributions with finite
second moment, the Euclidean mean is the unique minimizer of the Fréchet function, but the
Fréchet function on more general metric spaces may have multiple minima. As such, it seems to
be more natural to consider data covariation with respect to any point, not just the mean, and
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thus work with covariance fields. In recent work, we proposed a formulation for general covariance
tensor fields on Riemannian manifolds. For a random variable distributed according to a Borel
probability measure α on a Riemannian manifold (M, g) and a smooth symmetric kernel function
u : M ×M → R, define a covariance k-tensor as

Σk
α,u(x) :=

∫
M
⊗k∇xu(x, y)α(dy).

If M = Rn, k = 2, u(x, y) = ‖x−y‖2
2 , and x is the mean of the distribution, this definition that

only requires a locally linear structure coincides with the usual covariance matrix. Preliminary
findings about the behavior of these covariance tensor fields have been published in an Oberwolfach
report [1]. My future research plans along these lines include the formulation of discrete forms of
covariance tensors for distributions on the vertex set of a weighted network, as well as investiga-
tion of relationships between covariance tensors and the Wasserstein distance between probability
measures.

4. Detecting Carbon Nanotube Orientation with
Topological Data Analysis of SEM Images

High-performance carbon nanotube (CNT) materials are in high demand as a result of their
extraordinary mechanical, electrical and thermal properties. CNT alignment is an important prop-
erty in the fabrication of ultra-strong CNT composites. Hence, it is fundamentally important to
evaluate and quantify the degree of alignment using various characterization methods. In this work,
in collaboration with researchers from FSU High-Performance Materials Institute, we developed a
novel method to detect CNT orientation combining topological data analysis with scanning electron
microscopy (SEM). We use barcodes derived from persistent homology of SEM images to quantify
CNT alignment. The results we have obtained are highly consistent with those from polarized
Raman spectroscopy and X-ray scattering. Our approach offers a simpler and more effective way
of understanding the role that alignment plays in CNT properties. A manuscript reporting the
results obtained is in preparation.

5. Characterizing Phenotypic Plasticity of Ginkgo Biloba
Leaves with Topological Data Analysis

Phenotypic plasticity of living organisms can be seen in many guises and represents some of
the raw material for the evolutionary process. For example, different morphologies have different
functional properties and so can be favored, or not, under certain environmental conditions. In
this project, joint with an ecologist from Open University, UK, we carried out a pilot study with
Ginkgo biloba leaves that are known to produce leaves that are enormously diverse in their shape.

We employed persistent homology to develop models of morphological variation for leaves. This
has allowed us to quantify morphological variation in leaves of the same tree and compare the mor-
phology of leaves of extant plants and fossils. Such evolutionary mappings enable us to investigate
evolution over geological time scales and potentially relate contrasts in phenotypes to ecological
events. A manuscript reporting our findings is in preparation.

Once quantitative models of phenotypic plasticity are developed, interesting extensions become
possible. For instance, one may address questions such as: How do the various adult leaf shapes
relate to leaf development? Is it the case that all young leaves within a bud essentially have the same
shape, and that the diverse morphologies are produced later following exposure to environmental
conditions? Are the diverse morphologies related in any way to other aspects of morphology, such as
the architecture of underlying vasculature? I intend to continue to explore some of these problems
through this collaboration.



4 HAIBIN HANG

6. Other Research Interests

Deep learning has become a fascinating area which attracts researchers with various backgrounds.
In the future, I would like to explore analysis of deep neural networks with geometric or topological
methodology, which may give us some additional insights on the black box behind the training
process. Some recent articles have addressed some questions related to the relationships between
geometric or topological data analysis and deep neural networks. I think this will be a really
promising research area in the next few years.

Optimal transport is another area I want to explore more in the future. My previous research
projects have benefited a lot from ideas from optimal transport. Additionally, optimal transport
offers mathematical foundations for the analysis of several classical algorithms in computer vision
and shape analysis. Some recent articles also reveal some parallels between optimal transport and
deep learning. This is an area that is presenting rich and promising grounds for research and I
would like to devote some of my time to it.

I also intend to keep working on interesting scientific and practical applications of TGDA, as
this can increase the relevance of the discipline and also drive further theoretical developments in
TGDA.
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