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Covariance Matrix

Given a random vector Y in Euclidean space Rn, with the probability
measure α, we look at its projection < Y, v >= YT v onto a
one-dimensional vector space lv spanned by unit vector v ∈ Sn−1.

We calculate its mean and variance:

E[YT v ] =

∫
Rn

yT vdα(y) =

(∫
Rn

ydα(y)

)T

· v = E[Y]T · v

σ2(YT v) =

∫
Rn

(yT v − E[YT v ])2dα(y)

Arrange the terms we get:

σ2(YT v) = vT ·
(∫

Rn

(y − E[Y]) · (y − E[Y])Tdα(y)

)
· v
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The covariance matrix of Y is defined to be

Σ :=

∫
Rn

(y − E[Y])(y − E[Y])Tdα(y)

=E
[
(Y − E[Y]) (Y − E[Y])T

]

Then the variance of projection YT v is σ2(YT v) = vTΣv , which
measures how far the data are spread out from their mean in
direction v .
Hence covariance matrix contains information about how far the
data are spread out from mean in each direction.
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Sample points from a non-isotropic Gaussian distribution and its
covariance matrix; the directions of the arrows correspond to the
eigenvectors of this covariance matrix and their lengths to the
square roots of the eigenvalues.
Covariance matrix is commonly used in principal component
analysis.
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Why we look at local covariance matrix

We look at a very special distribution, with random points
distributed evenly around a circle.

What shall the covariance matrix look like?
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Kernel Function

K : Rn × Rn → R

Kernel function K (x , y) measures the space scale dependence
between data at points x and y .

When we fix (center) x , K (x , y)→ 0 as y →∞.

Kernel function K (x , y) is symmetric on x and y variable.

We can understand it as how
clear we can see y from the
standpoint x .
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A multiscale kernel function K (x , y ; t) is a sequence of kernel
functions parametrized by t ∈ [0,+∞).

As t goes to 0, K (x , ·; t) converges to δx weakly.

An important multiscale kernel: heat kernel

k(x , y , t) =
1

(4πt)n/2
exp(−‖x − y‖2

4t
).
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Matrices and Tensors

Given a vector space V , a multi linear map V × V → R is
called ((0,2)-type) tensor.

For any linear function f , g ∈ V ∗, f ⊗ g : V × V → R, which
sends (a, b) to f (a)g(b), is called a pure tensor.

Each tensor is a linear combination of pure tensors.

If V is equipped with an inner product, we have an
isomorphism α : V → V ∗ which sends u to u∗ :=< u, · >.

We write u∗ ⊗ v∗ simply as u ⊗ v , hence
u ⊗ v(a, b) =< u, a >< v , b >, for ∀u, v , a, b ∈ V .

We can define an inner product between pure tensors
< u1 ⊗ v1, u2 ⊗ v2 >:=< u1, u2 >< v1, v2 >, which expands
linearly to the space of all (0,2) tensors.

If we fix a basis {e1, e2, · · · , en}, then any tensor
∑

c ijei ⊗ ej
corresponds to a matrix (c ij).

If the above basis is standard orthogonal basis, we have
‖
∑

c ijei ⊗ ei‖ =
√∑

(c ij)2.
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Covariance Tensor Field on Euclidean Space

Definition (Mart́ınez, Mémoli, Mio)

The multiscale covariance tensor field (CTF) of probability measure
α on Rn associated with the kernel K is the one-parameter family of
tensor fields, index by t ∈ (0,∞), given by

Σα,t(x) :=

∫
Rn

(y − x)⊗ (y − x)K (x , y , t)dα(y),

provided that the integral converges for each x ∈ Rd and t > 0.

It’s important to show that this CTF is robust to noise and outliers.
Therefore, they proved a stability theorem with respect to a proper
distance between probability measures.
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Wasserstein Distance

Definition

(Coupling) Let α, β ∈ P(M) be two probability measures on M.
Coupling measures α and β means constructing probability measure
γ ∈ P(M ×M) on M ×M, in such a way that p1∗(γ) = α,
p2∗(γ) = β. Here pi : M ×M → M is the projection onto i-th
factor.
The set of all couplings of α, β is denoted by Γ(α, β).

Definition

Let (M, d) be a Polish metric space, and let p ∈ [1,∞). For any
two probability measures α and β on X , the Wasserstein distance of
order p between α and β is defined by the formula

Wp(α, β) := inf
γ∈Γ(α,β)

(∫ ∫
d(z1, z2)pγ(dz1 × dz2)

)1/p
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Stability Theorem of CTF on Euclidean Space

Definition

Let n be a positive integer and f : [0,∞)→ R a bounded and
measurable function satisfying:

1 f (r) ≥ 0, ∀r ∈ [0,∞);

2 Mn =
∫∞

0 rn/2−1f (r)dr ≤ ∞;

3 There is C > 0 such that rf (r) ≤ C , ∀r ∈ [0,∞).

The multiscale kernel K : Rn × Rn × (0,∞)→ R associated with f
is defined as

K (x , y , t) :=
1

Cn(t)
f (
‖y − x‖2

t2
),

where Cn(t) = 1
2 t

nMnωn−1.
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This is the stability theorem:

Theorem (D́ıaz Mart́ınez, Mémoli, Mio)

(Stability for Smooth Kernels) Let f : [0,∞)→ R be as in
definition 4 with multiscale kernel K . Suppose that f is
differentiable and there exists a constant A1 > 0 such that
r3/2|f ′(r)| ≤ A1, ∀r ≥ 0. Then, there is a constant Af > 0, that
depends only on f , such that

sup
x∈Rn
‖Σα,t(x)− Σα,t(y)‖ ≤ tAf

Cn(t)
W1(α, β),

for any α, β ∈ P1(Rn) and any t > 0.
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Data on Riemannian Manifolds

How can we formulate a similar framework on more generalized
Riemannian manifolds?

Haibin Hang 13 / 30 Multiscale Covariance Tensors for Data on Riemannian Manifolds



Riemannian Manifold

In our work, we are exploring extensions of CTF to Riemannian
manifold (M, g).

Definition

Let γ be a geodesic curve parametrized by arc length with γ(0) = x .
If t0 = sup{t ∈ [0,∞)|d(x , γ(s)) = s,∀ 0 < s ≤ t} is finite, we call
γ(t0) the cut point of γ with respect to x . The union of all cut
points is called the cut locus of x and is denoted by C (x).

Theorem

If there exist at least two different minimizing geodesics joining x to
y, then y ∈ C (x).

Theorem

C (x) has measure zero with respect to the Riemannian measure µ
on (M, g) for ∀x ∈ M.
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Definition

For any x ∈ M, the largest r such that
expx : B(r) = {v ∈ TxM|

√
< v , v >g < r} ⊂ TxM → M is

injective, is called the injectivity radius of x , denoted by R(x).

Definition

diam(M) = sup
x ,y∈M

d(x , y) is called the diameter of M.

Now we introduce the kernel functions on Riemannian manifold:

Definition

The multiscale kernel on M is a function K : M ×M × (0,∞)→ R
which satisfies: (i) K(x,y,t)=K(y,x,t); (ii) As t → 0, K (·, y , t)→ δy .
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Heat Kernel

Definition

Heat kernel is a continuous function k : M ×M × (0,∞)→ R such
that 4yk(x , y , t) + ∂

∂t k(x , y , t) = 0 and when we fix x , k(x , ·, t)
weakly converges to δx as t → 0.

Theorem

Let (M, g) be a compact Riemannian manifold. Then the heat
kernel function to the heat equation on (M, g) does exist. And the
heat kernel is unique and symmetric in the two space variables.
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Heat Kernel and Wasserstein Distance

Theorem

Given any Borel probability measure γ ∈ P(M) on compact
Riemannian manifold (M, g), u(x , t) =

∫
M k(x , y , t)dγ(y) is a

solution of the heat equation:
∂u

∂t
+4u = 0

u(t, ·) t→0−−−−→
weakly

γ
(1)

Theorem

For any Borel probability measure γ ∈ P(M) on compact
Riemannian manifold (M, g), the solution
u(x , t) =

∫
M k(x , y , t)dγ(y) of heat equation 1 converges to γ in

the sense of Wasserstein distance Wp (p ≥ 1) as t → 0.
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CTF on Riemannian Manifold

We review the definition on Rn:

Σα,t(x) :=

∫
Rn

(y − x)⊗ (y − x)K (x , y , t)dα(y).

On a Riemannian manifold, generally we can’t take the difference
between two points. A natural idea is to replace y − x by
exp−1

x (y) ∈ TxM.

Remark

exp−1
x may not be well-defined at the cut locus of x ∈ M. We set it

to be 0 in that case.
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Definition

For any measure α on (M, g), we define the covariance tensor field
associated with a kernel K (x , y , t) to be

Σα,t(x) :=

∫
M

exp−1
x (y)⊗ exp−1

x (y)K (x , y , t)α(dy),

provided that the integral converges for each x ∈ M and t > 0.

Remark

Suppose that (M, g) is a closed Riemannian manifold. α ∈ P(M) is
a probability measure. Then Σα,t is defined for ∀x ∈ M.
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Since the behavior of exp−1
x around the cut locus of x is hard to

control, we did not find a way to prove a stability theorem like the
Euclidean space.

One way to fix this problem is to look at a class of very special
kernel functions:

Definition

We say h : M ×M × (0,+∞)→ R is a kernel, away from cut locus,
if h is a multiple kernel and for any fixed x ∈ M, the support of
h(x , ·) has no intersection with the cut locus C (x).

Remark

For any x ∈ M and t > 0, Vx ,t(y) := exp−1
x (y)

√
h(x , y , t) is

continuous (or smooth) on M if h(x , y , t) is continuous (or smooth)
in the y variable. And we have Σα,t(x) =

∫
Vx ,t(y)⊗Vx ,t(y)dα(y).
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Lemma

Suppose that M is compact and h is a continuous kernel away from
cut locus. Then there exists κ(t) > 0 such that for any fixed x ∈ M,
‖ exp−1

x (z1)
√
h(x , z1, t)− exp−1

x (z2)
√
h(x , z2, t)‖ ≤ κ(t)d(z1, z2).

Theorem

Let d(M) be the diameter of compact Riemannian manifold (M, g).
h(x , y , t) is a continuous kernel away from the cut locus and
H(t) := max

x∈M,y∈M
{h(x , y , t)}. If α, β ∈ P1(M), then the multiscale

covariance tensor fields for α and β associated with the kernel h
satisfy

sup
x∈M
‖Σα,t(x)− Σβ,t(x)‖ ≤ 2d(M)κ(t)

√
H(t)W1(α, β)

for any t > 0.
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Structure CTFs

The structure tensor, also referred to as the second-moment matrix,
is often used in computer vision and image processing.
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Given a random variable with smooth probability density
function f (x);

Shift f to the direction v , we get v∗(f )(x) := f (x − v);

Compare their square distance associated with kernel function
K (x , y , t):

d(f , v∗(f )) =

∫
[f (y)− f (y − v)]2K (x , y , t)dy

≈
∫
< ∇x f (y), v > K (x , y , t)dy

=

∫
∇x f (y)⊗∇x f (y)K (x , y , t)dy(v , v)

We get a tensor Σ :=
∫
∇x f (y)⊗∇x f (y)K (x , y , t)dy
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Definition

Let α be any distribution on Riemannian manifold M and K (x , y , t)
be a multiple kernel. We first convolve α with heat kernel to get a
smooth heat solution αs : M → R. Then we have a covariance
tensor field Σα,s,t(x) =

∫
M ∇αs(y)⊗∇αs(y)K (x , y , t)dµ(y).

We need to work on the stability properties and some applications of
this tensor field.
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Some Thoughts on Our Definition

In some ways, these definitions are not very natural.

∫
M exp−1

x (y)⊗ exp−1
x (y)K (x , y , t)dα(y)∫

M ∇αs(y)⊗∇αs(y)K (x , y , t)dµ(y)

We were trying to relate CTF with the Hessian operator:

Σα,t(x) :=

∫
M

4 t2 Hessxk(x , y , t)dα(y) + 2 t g

∫
M
k(x , y , t)dα(y)
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The intuition behind the Harris detector suggests other ways of
interpreting CTFs.

Instead of moving distributions, why don’t we move test
functions?

d(k, v∗(k)) =

∫
M

(k(x , y , t)− k(x − v , y , t))2dα(y)

≈
∫
M
< ∇xk(x , y , t), v > dα(y)

=

∫
M
∇xk(x , y , t)⊗∇xk(x , y , t)dα(y)
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In the Euclidean space, Gaussian kernel (heat kernel)

G (x , y , t) =
1

(4πt)n/2
exp(−‖x − y‖2

4t
)

∇xG (x , y , t) =
1

2t
G (x , y , t)(y − x)

Σα,t =

∫
∇xG (x , y , t)⊗∇xG (x , y , t)dα(y)

=

∫
1

4t2
(y − x)⊗ (y − x)G 2(x , y , t)dα(y)
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In the Riemannian manifold, Gaussian kernel

G (x , y , t) =
1

(4πt)n/2
exp(−d2(x − y)

4t
)

∇xG (x , y , t) =
1

2t
G (x , y , t) exp−1

x (y)

Σα,t =

∫
∇xG (x , y , t)⊗∇xG (x , y , t)dα(y)

=

∫
1

4t2
exp−1

x (y)⊗ exp−1
x (y)G 2(x , y , t)dα(y)
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More basically, we can show that the usual covariance tensor
field may be expressed as

Σα(x) =

∫
∇x(

d2(x , y)

2
)⊗∇x(

d2(x , y)

2
)dα(y),

where d(x , y) = ‖x − y‖ is the Euclidean distance.

When we use diffusion distance
dt(x , y) =

∫
(k(x , z , t)− k(y , z , t))2dµ(z), and suppose that

M is a homogeneous space, we get our multiscale covariance
tensor filed.
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Thank you for the attention!

Haibin Hang


